130 research outputs found

    In Situ Formation and Dynamical Evolution of Hot Jupiter Systems

    Get PDF
    Hot Jupiters, giant extrasolar planets with orbital periods shorter than ~10 days, have long been thought to form at large radial distances, only to subsequently experience long-range inward migration. Here, we propose that in contrast with this picture, a substantial fraction of the hot Jupiter population formed in situ via the core accretion process. We show that under conditions appropriate to the inner regions of protoplanetary disks, rapid gas accretion can be initiated by Super-Earth type planets, comprising 10-20 Earth masses of refractory composition material. An in situ formation scenario leads to testable consequences, including the expectation that hot Jupiters should frequently be accompanied by additional low-mass planets with periods shorter than ~100 days. Our calculations further demonstrate that dynamical interactions during the early stages of planetary systems' lifetimes should increase the inclinations of such companions, rendering transits rare. High-precision radial velocity monitoring provides the best prospect for their detection.Comment: 19 pages, 10 figures, accepted to Ap

    Extrasolar Trojans: The Viability and Detectability of Planets in the 1:1 Resonance

    Get PDF
    We explore the possibility that extrasolar planets might be found in the 1:1 mean-motion resonance. There are a variety of stable co-orbtial configurations, and we specifically examine three different versions of the 1:1 resonance. These include tadpole and horseshoe type orbits, as well as a more exotic configuration which occurs when one planet has a highly eccentric orbit while the other planet moves on a nearly circular orbit. We show that pairs of planets in 1:1 resonance yield characteristic radial velocity signatures which are not prone to the sin(i) degeneracy. Indeed, Keplerian fits to the radial velocities cannot reveal the presence of two planets in the 1:1 resonance. We discuss a dynamical fitting method for such systems, and illustrate its use with a simulated data set. Finally, we argue that hydrodynamical simulations and torqued three-body calculations indicate that 1:1 resonant pairs might readily form and migrate within protostellar disks.Comment: 22 pages, 10 figures, Submitted to Astronomical Journa

    Long Term Evolution of Close Planets Including the Effects of Secular Interactions

    Get PDF
    This paper studies the long term evolution of planetary systems containing short-period planets, including the effects of tidal circularization, secular excitation of eccentricity by companion planets, and stellar damping. For planetary systems subject to all of these effects, analytic solutions (or approximations) are presented for the time evolution of the semi-major axes and eccentricities. Secular interactions enhance the inward migration and accretion of hot Jupiters, while general relativity tends to act in opposition by reducing the effectiveness of the secular perturbations. The analytic solutions presented herein allow us to understand these effects over a wide range of parameter space and to isolate the effects of general relativity in these planetary systems.Comment: 14 pages, 2 figures, accepted to Ap

    Constraints on the Intergalactic Transport of Cosmic Rays

    Get PDF
    Motivated by recent experimental proposals to search for extragalactic cosmic rays (including anti-matter from distant galaxies), we study particle propagation through the intergalactic medium (IGM). We first use estimates of the magnetic field strength between galaxies to constrain the mean free path for diffusion of particles through the IGM. We then develop a simple analytic model to describe the diffusion of cosmic rays. Given the current age of galaxies, our results indicate that, in reasonable models, a completely negligible number of particles can enter our Galaxy from distances greater than 100\sim 100 Mpc for relatively low energies (EE <106< 10^6 GeV/n). We also find that particle destruction in galaxies along the diffusion path produces an exponential suppression of the possible flux of extragalactic cosmic rays. Finally, we use gamma ray constraints to argue that the distance to any hypothetical domains of anti-matter must be roughly comparable to the horizon scale.Comment: 24 pages, AAS LaTex, 1 figure, accepted to Ap

    Recruitment Sources of Channel and Blue Catfishes Inhabiting the Middle Mississippi River

    Get PDF
    Insight into environments that contribute recruits to adult fish stocks in riverine systems is vital for effective population management and conservation. Catfish are an important recreational species in the Mississippi River and are commercially harvested. However, contributions of main channel and tributary habitats to catfish recruitment in large rivers are unknown. Stable isotope and trace elemental signatures in otoliths are useful for determining environmental history of fishes in a variety of aquatic systems, including the Mississippi River. The objectives of this study were to identify the principal natal environments of channel catfish Ictalurus punctatus and blue catfish I. furcatus in the middle Mississippi River (MMR) using otolith stable oxygen isotopic composition (δ18O) and strontium:calcium ratios (Sr:Ca). Catfishes were sampled during July-October 2013-2014 and lapilli otoliths were analyzed for δ18O and Sr:Ca. Water samples from the MMR and tributaries were collected seasonally from 2006-2014 to characterize site-specific signatures. Persistent differences in water δ18O and Sr:Ca among the MMR and tributaries (including the upper Mississippi, Illinois, and Missouri rivers as well as smaller tributaries) were evident, enabling identification of natal environment for individual fish. Blue and channel catfish stocks in the MMR primarily recruited from the large rivers (Missouri and Mississippi) in our study area, with minimal contributions from smaller tributaries. Recruitment and year class strength investigations and efforts to enhance spawning and nursery habitats should be focused in the large rivers with less emphasis in smaller tributaries

    A Ground-Based Albedo Upper Limit for HD 189733b from Polarimetry

    Get PDF
    We present 50 nights of polarimetric observations of HD 189733 in BB band using the POLISH2 aperture-integrated polarimeter at the Lick Observatory Shane 3-m telescope. This instrument, commissioned in 2011, is designed to search for Rayleigh scattering from short-period exoplanets due to the polarized nature of scattered light. Since these planets are spatially unresolvable from their host stars, the relative contribution of the planet-to-total system polarization is expected to vary with an amplitude of order 10 parts per million (ppm) over the course of the orbit. Non-zero and also variable at the 10 ppm level, the inherent polarization of the Lick 3-m telescope limits the accuracy of our measurements and currently inhibits conclusive detection of scattered light from this exoplanet. However, the amplitude of observed variability conservatively sets a 3σ3 \sigma upper limit to the planet-induced polarization of the system of 58 ppm in BB band, which is consistent with a previous upper limit from the POLISH instrument at the Palomar Observatory 5-m telescope (Wiktorowicz 2009). A physically-motivated Rayleigh scattering model, which includes the depolarizing effects of multiple scattering, is used to conservatively set a 3σ3 \sigma upper limit to the geometric albedo of HD 189733b of Ag<0.37A_g < 0.37. This value is consistent with the value Ag=0.226±0.091A_g = 0.226 \pm 0.091 derived from occultation observations with HST STIS (Evans et al. 2013), but it is inconsistent with the large Ag=0.61±0.12A_g = 0.61 \pm 0.12 albedo reported by (Berdyugina et al. 2011).Comment: 10 pages, 9 figures, submitted to Ap

    cISP: A Speed-of-Light Internet Service Provider

    Full text link
    Low latency is a requirement for a variety of interactive network applications. The Internet, however, is not optimized for latency. We thus explore the design of cost-effective wide-area networks that move data over paths very close to great-circle paths, at speeds very close to the speed of light in vacuum. Our cISP design augments the Internet's fiber with free-space wireless connectivity. cISP addresses the fundamental challenge of simultaneously providing low latency and scalable bandwidth, while accounting for numerous practical factors ranging from transmission tower availability to packet queuing. We show that instantiations of cISP across the contiguous United States and Europe would achieve mean latencies within 5% of that achievable using great-circle paths at the speed of light, over medium and long distances. Further, we estimate that the economic value from such networks would substantially exceed their expense
    corecore